ON THE DERIVATION OF A THEORY OF BENDING OF
LAYERED PLATES

PMM Vol. 32, No. 2, 1968, pp. 232-243

M.l. GUSEIN-ZADE
(Moscow)

(Received July 14, 1967)

The construction of a theory of bending of thin layered plates is described herein. The
plates consist of layers having significantly different elastic properties. The investigation
is carried out by a method of asymptotic integration of the three-dimensional equations of
the theory of elasticity {1 and 2] in the narrow region occupied by the plate.

The complete state of stress in a layered plate consists of an internal state of stress
and a state of stress corresponding to edge effects. The internal state of stress is in-
vestigated in this paper.

For layered plates consisting of alternating soft and stiff layers with elastic moduli E,
and E,, respectively, a classification of the problems will be made according to the mag-
nitude of the ratio E,/E,. It is shown thet-in a wide range of variation of E,/E, covering
almost all possible cases of layered plates the problem of deformation of the plate under
the action of arbitrary surface loading reduces in each approximation to the usual equations:
the problem of flexure reduces to a biharmonic equation, and the inplane problem to the
equations of generalized plane stress for some anisotropic plate.

The asymptotic method of constructing a theory of layered plates permits a unified
approach to the problem of justification and establishment of the limits of applicability of
any of the hypotheses upon which the various theories of layered plates are based. More-
over, this approach makes it possible to determine the shearing and normal stresses on
planes parallel to the surface of the plate in addition to the flexural stresses. If these
stresses on planes parallel to the sanrface play a subordinate role in homogeneous plates,
they can be of primary importance for plates consisting of layers having radically differ-
ent elastic properties. The determination of these stresses can be very significant for
solution of the problem of the strength of the bonding between the various layers.

1. We shall consider a layered plate consisting of alternate stiff and soft layers. We
shall consider that the top and bottom layers of the plate are stiff layers, We make use of
an orthogonal system of curvilinear coordinate a, 3, ¥ in which the y-axis is perpendicular
to the plane of the plate. The a — 8 coordinate plane may either pass through any layer
(soft or stiff) or else coincide with any plane of separation between layers. For definiteness,
we shall assume that it passes through a soft layer. We shall consider that this layer con-
sists of two layers having the same elastic properties. We begin the numbering of the layers
from the a — f3 plane using negative numbers for the layers located below this plane. The
soft layers will then have odd numbers and the stiff layers even ones.

We shall consider that the individual layers of the plate have different thicknesses,
elastic moduli and Poisson’s ratios, but that the elastic moduli of all the soft layers are
approximately E, and the elastic moduli of all the stiff layers are approximately E,.

We express the ratio E,/E, as some power of the dimensionless thichness € = A/!

(the plate thickness is 2h and ! is a characteristic plan dimension of the plate), i.e., we set
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E\/E, =€°.

The range of values of o close to zero, which corresponds to a layered plate composed
of layers having comparable elastic properties has been considered in {8]. We shall study
the range of values a > 0. In this case, a layered plate is characterized by two small para-
meters, € and E,/E, = %,

Without loss of generality we may assume, firatly, that a takes on rational values,
i.e., 6=p/q (where p and g are integers), and, secondly, that g is not a very large number.
These assumptions may always be satisfied since there exists a certain arbitrariness in
the choice of the quantities € and E,/E,.

The asymptotic integration of the equations of the theory of elasticity will be carried
out for such values of a by using expansions in the parameter A = ¥4, The transition
from this parameter to the fundamental parameters of the layered plate is carried ont by A
to integral powers.

2. The internal states of stress and strain for a homogeneous layer were investigated
in [4], where expansions in the parameters g were obtained for displacements and stresses.
To obtain the internal states of stress and strain of an individual layer of a layered plate,
it is necessary to carry through an asymptotic integration of the Navier equations usin
expansions in the parameter A == gl/9, This is easily accomplished by analogy to {4].

Let ug®, ug?®, u,) be the components of the displacement vector of the j-th
layer. We introduce the dimensionless quantities

u, ) u 6)

vai = 5, v =

. u o B L
UY(J =—~;lm. g::-i—, T‘::.-T, c.‘; ——;-l-

The solution of the system of equations obtained from the Navier equations for the
j-th layer after transforming to the dimensionless variables is constructed in the form

v = gx41 2 Aval9) (e, v, ) = gx 2 At 9 (2.1)

/N

=0 =0

Here and in what follows the first superscript indicates the layer namber to which the
quantity refers and the second superscript is related to the approximation number.

We obtain equations for v, ‘%, vgl", v,U" which are easily integrated with respect
to {; this leads to a solution of the form

r41 r
a9 = X 0% @ 0,9 = D) 00 2.2)
Ax=p) b= !
where
_ {s/q] , if [s/4q] is even
T {[s/ql —1, if ([s/q] isodd (2.3)

The brackets refer to the integral part of s/ q.
The quantities v,(,j”), v.;?’), vf{." are functions of £ and 1); they are related by the
following differential Eqs.
a1 Skas B LI
Va, ez = G0 (E 4 2) {"2(1 =) Eﬁf{m[

a2 ;. 33
—é‘a— (I[‘QU“&" -I)) .1'
F] G, 3-20) 1 1 d (3. 8-99) a i, s-2a
+ gy aves )]}+ Hy oy {'Fl,Ha [-_aa (Hvpi™™ ™) — 55 (v "+

i 1 1 @ G, -
-+ —2—(—1—__—“ & -ﬁ: E Yy, L’—; ”)} {xB) (2.-’!)
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for k20

G, _ 1 1 i 2 jos-2q),
Uy kg = (k+1)(f¢+2){—2(1~—‘\?j) (k “f"i)m["ég (i[&va,f.)rt ‘7)} 4

3 (G,5-20) ] -2 (G.2-20)
+3‘E(Hava, wrl ) WWVUYH }

In addition, we find that

. {—w, .
Go) __ i1 901 1 a (i, 3-29) 9! Gl t-2p)
2 T 2”5 fia ot {H“HB [’5’5' (Hﬁvao ) + "Z)""l— ([Ia.vﬂu )]} 4

Vg

1 4. 097 1 0 G s-20) 2 G,s-20)
+-.2'7r”a‘q‘{ﬁ Hy [.3—5’(‘”5”50 )— E;I—(I[avao )J}"“
_,.__1.*__1_8_‘:".(132 {xB) 2 f'))

20— 3v) M, 3 -
where H, and H A are the reciprocals of the scale factors (i.e., the square roots of the
metric coefficients). Eqs. (2.4) are recurrence relations which permit the detemmination of
va(,_?‘), vﬁ(js) (for k> 3), and v,y,‘(f') (for k 2 2} in terms of the quantities in the (s — 2¢)-th
approximation.

We now determine the stresses corresponding to the displacements of Egs. (2.1), If
we express the strain components in Hooke’s Law in terms of displacements, tranaform to
dimensionless quantities, and then substitute (2.1) for the displacements, we obtain

{ . . i 5 aNY a8 ) 2y g
N Say) == €' 2 ML @, ~E—G¢§” =& 050 (2.6)

3 S i =0

1 j X 1 1 j 2 1 - j 5 =
0P =D A6 (e, A sV =t 20

i 820 i $=xQ

The quantities in Egs. (2.6) and {2.7) with superscript s are polynomials in 4

r+41 r+1
j IR T j L
0t =D U0 m, oY = 3 e (2.8)
Ry k=0
r r+1
G ) Lk H j O gk j
Oay? = N ¥, 59 (as), o,V = > the, (2.9)
== =0

The value of r is determined in accordance with (2.3). The quantities with the sub-
script k in Egs. (2.8) and (2.9) are functions of £ and 7 which are related by the following
Expresaions:

Gs) __ ] 1 ra Gsh 4 8 e (G
Goak’ = W vy —2v) {f!uﬂa [Ti (H5va™) -+ g (Havsi )] +
(9
3 (}-,-N—'..’Q) 1 1 ava.‘.‘ 1 a}Icl (js)
+ (k + 1) Uy, k41 }+ 1 +"j ["g‘: 3t - Hu 113 an Vg ] (=8) (2'10)
P N N O WAL ) (-&E’.)]
ap 2(T+v) H, %8 \"H, Hy on \"H_
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s)

g 1 1 a Yi. is
Savk =57 ) [WZ sz T EHD "“-(i*)‘] (@2 @1

Gs _ Y 1 0 Gs) d (o)
Cyyk = (1 + vj) (l . 2",') Ha.HB [-a‘a‘ (llsvali ) + "a_r'l' (t]avﬂk )] +

{—w, .
J A (7, 3+2q)
vy ¢ D

The quantities

6 @, 6l 6%, o @
satisfy Eqs.
1 19 G9) 2 g s o, OHa g
m [—5-5— (}]551;: ) +- -ETT (Hacaz,’a]: — F 533{‘? + —‘5"]1 Ga.a]i:] +-
+*4+ 1o =0 @ (2.12)

1 2 js a js ' L (.8
a7 L Wosat) - g Waosi |+ (k4 D5,y = 0

3. We shall consider a layered plate for which 0 < a <2, acted upon by arbitrary
surface loading. The boundary conditions have the form

cagn) =Tq" (2, B) (x8), 679") == TY+ (O‘B) for $=10,,"
eam) ) 3.0
caﬁ"""‘) =1, (2, B) @3, Oy =Ty (aB) for =10 om

Geometrical and statical conditions of bonding of the layers must be satisfied on the
planes of contact between layers. We now write out these conditions for the layers 2k and
2k + 1, i.e., the condition for (e {2,‘:

va(‘l’i) —_ va(‘-"'i*'l) (a3, U*(El-) — vY(’«‘kﬂ)
)

2L) ok+1 13 13 (3-2)
oai _ c;ﬁ +1) @9, GY? ) . GY$2\+1)

We denote the indices of the first nonzero terms in the expansions (2.7) by sq and se
for the stiff and soft layers, respectively.

Taking into account (2.1) and (2.7), we obtain the boundary conditions and the condi-
tions of bonding of the layers from (3.1) and (3.2). For { = {3, we have:

for the zeroth approximation

E:t’gne"”l"’da(\?"’ ) — E P (§, 1]) (23), E‘zez"e)H!x.ioch?ﬂ, 30) fy+ (§, Tl) (3.3)
for the s-th approximation
G 0 (e, 6 e 0 (3.4)

The boundary conditions for 4—2'" have analogous forms for the various approximations.
We now write out the conditions of bonding on the surfaces of the (2k + 1)-th (soft) layer
(k=0,1,2, ....n -~ 1):

for = Lantr
Vo (2h42,8) — Vo 2k+1,8) (ad), 07(2’4*2-5) - vYW‘*l- 3) (35)
L N L S
Egegid28’(+’x“+86~,~({2k+2' 8,48) — Elezl,ﬂexwk" "80-,‘(,2’“1' 8,+8) (36)
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for C === sz.-

V(. 1) == y, @5+1,8)  (ap), v (20 == vY(zi;i-l,s) (3_7)
: L L 2k R
Ezeg:ﬁ“lls“ scaslz s Bg+3) - Elezkﬂexﬂls,ﬂcagv +1,8,+5) (a8) (3 8)
. ' 4,
Eze%guz l"'ﬂcw(,‘s"'%“) - Exezz;ue”z ?\."‘”dr(f" L1, 8,+8)

In Egs. (3.3) to (3.8) we have taken €y, = E,) [/ E,, €01, = Loy 1/ Ey Tt fol-
lows from what has been said earlier that e, and e, 4 | are not far from unity.

We shall now ascertain the possibility of satisfying the boundary conditions (3.3) and
the statical conditions of bonding of the layers (3.6) and (3.8). On the basis of arguments
which are analogous to those given in Section 3 of {4] for ahomogeneous plate, we arrive
at the conclusion that s¢ = 2¢ and s4 = 2¢ — p. This means that in the Expressions (2.7)
for Oay, 03+ and 0. the first 2 terms are zero for a stiff layer, and the first 2g - p
are zero for a soft layer. From the condition that the indicated terms go to zero, we obtain
the following relations for the j-th layer:

{ ar (s}

¥ 5 ‘
', og el =0 (3.9)

.._1._.. _6 J7. 5 G ~6 (s} 1mvj (. s+29) \
11“113 r)?( %0 )"m 6‘6’ (Havﬁo ) + vjw Yy, =0 (3.1

¥ 7j=2kk=1,2,.., s —1, —2, ..., —m) the conditions {3.9) and (3.10) are
satisfied for the approximations s = 0, 1, 2,..., 24 — 1.

If, however,/ = 2k — 1 (k= 1, 2,.., mlorj =2k -+ 1 (k= —1, —2,..., —n})
then the conditions (3.9) and (3.10) are satisfied for s = 0, 1, 2,..., 2¢ — p — 1.

The conditions (3.9) and (3.10) are equivalent to the matisfaction of the Kirchhoff
assumption. Therefore, the Kirchhoff assumption is satisfied for the stiff layers in the
first 2 approximations, and in the soft layers for the first 2¢ — p approximations. The
first 2¢ approximations thus fall into two groups. The first group consists of the approxi-
mations $ =0, 1, 2, ..., 2¢ — p — 1. In these approximations the Kirchhoff assumption si
satisfied for the whole layered plate as @ unit. The approximations s = 2¢ - p, 2¢ = p +1,...,
2¢ — 1 form the second group. In these approximations the Kirchhoff assumption holds only
in the stiff layers of the plate,

The character of the state of stress in the various layers of the plate also depends on
the number of leading terms in the expansions (2.7) which go to zero. Let us estimate the
orders of magnitude of the stresses present in the stiff and soft layers. Considering that
35 = 2q and 54 = 2¢ — p, we obtain from (2.6) and (2.7)

for the stiff layers

2k, ok ok +2. 2k 3 . 2% .
chg‘k)’ GS(B‘I )' Ga;(-} e E‘jﬁn o' Ga(\'q )! 63‘({2’ )~ E2£x+s' 6‘{(‘:}) ~ Ege’”‘ (3‘!1)
for the soft layers (3.12)
Gagh—x)' ‘5',;;52"_1): cagsi.~1) ~ E1e**2, %9"—‘). Gﬁ(;.’l-—l)w Ee=tde, Gﬁ"“”szm"”"“

It follows from (3.11) that the stiff layers act essentially in flexure, since the flexural
stresses o(22) o) and og“:q’" are the largest. The shearing stresses ofﬁ’{“\ and of_f:")
are one order smaller than the flexural stresses, and the normal stresses Off") are two

Y

orders smaller.

It follows from (3.12) that in the soft layers the significance of the shearing stresses

0(:3‘”, and 0(;:_“ of the normal stresses aff‘f'"'” becomes greater as a increases.
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This indicates that as a gets larger, the soft layers act more and more in shear and com-
pression. We remark that in the first p approximations the shearing stresses are constant
through the thickness of the soft layers. Moreover, as can be seen from (3.12), the order of
magnitude of these stresses for 1 < a <2 is greater than the order of magnitade of the
flexural stresses. This means that for 1 < a <2, Reissner's assumption f;] is satisfied in
the soft layers in the first p approximations.

4. The expressions for the displacements and stresses in any layer contain six arbitrary
functions. for each approximation. In the s-th approximation the following are arbitrary
functions:

for a stiff layer

2);. 8) (2K, 3) , 2k, 9 (2k,2q+3) (21:,2q+s) 20, 2q+8)
Uaf) » Upo r Uy »  Cavo v 5v0 »  Svvo
for a soft layer
. (2k-1,8) (2L-1,8) (2k-1,8) (2k-1,2q-p+3) (2k-1,27-p+s) (2L~1,29-p+s)
Cap ) y Uxo v Gayp y O30 v Oyvo

If in the s-th approximation we estimate the six arbitrary functions corresponding
to a soft layer from the twelve bonding conditions of this soft layer with the two adjacent
stiff layers, (3.5) to (3.8), we then obtain six constraint conditions [4] between neighbor-
ing stiff layers in the s-th approximation. The constraint conditions between neighboring
stiff layers make it possible to eliminate the soft layers from consideration. These rela-
tions contain the twelve arbitrary functions corresponding to the s-th approximation for the
stiff layers adjacent to the soft layer in question. [a addition, these conditions contain
quantities relating to the previous approximations, which we consider as known when con-
structing a given approximation.

For the zeroth approximation the constraint relations for the layers 2k and 2k + 2
have the form

, 2k +2, ok, 21 +2,0)
vm()ek 0) _ vughw 0} @3, vﬂ(; 0) — UY(() + (4'1)

k,2 . ok,2 2 _ (2k,2 2k+2,2Q) (21+2,29)
€2k [Oago 2 + Cm'.ca(u ? + C2iGaye q)] = €o)4a [‘Sa(vo + Loi11Gavy +

P 2h+2,2q)
4 LotaiGate 0] @B (4.2)
2%, 2q) o (ak,29) 3. 2k, 20y __
€ok IGAO —_ Cgk Cyve ha 2€2l: Svv3 | =
2542,20) 25 (2k42,20) 35, (2h+2,20)
= €2k+n lﬁvs«n P — Lot 5*&2 — 2Lt G*S‘“ ]

For a layered plate consisting of n + m stiff layers, there are 6(n + m — 1) constraint
conditions for the stiff layers and six boundary conditions for { = 42” and {=¢_qp for

each approximation. In these 6 (n + m) equations, 6 (n + m) arbitrary functions occur which
refer to the stiff layers and correspond to the approximation in question.

5. We now show that the problem of constructing any approximation reduces to the
solution of three two-dimensional differential equations.

We first observe that the values of some of the quantities are closely connected with
this approximation, while the values qf others are determined from the previous approxi-
mations. There are three classes of quantities in the latter group: some are expressed in
terms of the (s — 2¢)-th approximation, others in terms of the (s ~ 2q + p)-th approximation,
and the third set in terms of the (s — 2g)-th end {s — 2q + p)-th approximations jointly. The
superscript s which indicates the number of the approximation will not be used to denote
these quantities, Instead, we shall use the supercripts 0, ¢, and 7 for the three types.
Moreover, we shall agree to drop the superscript indicating layer number on quantities which
refer to the layered plate as a whole.

From the geometric constraint conditions between stidd layers, it follows that
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T L R @o, v @ V=yp O<s<2y—p—1) G4
t%‘()23:, 5 _ ”af:) + vagz};, x) @ ), ”yé,?k' 8 _. vﬁ()s) 2—p<s<2U—1) (5.2

v, ("" - vaa') -+ vaff"" " (@ A, v,{g”"' f) == ”v((f) + v%""”) ea<<s<4g—p—1) (0.3)
k=1,2,...,n,—1, —2,...,,~m)

In (5.2) and (5.3) we take

va(()s) — r&gn, 8) (= B, Uﬂgs) = P ‘()211 s)

Then we have
for the approximations 29 — p < s 2¢ — 1

vaﬁ,”" ) _. 0 @ (3.4

an—1i, )
a})g“.” V=2 1+ v!n-l) (‘:211’1 - §2ﬂ~2) (Sé\m B

2n~3, 8)
T ) — 2(1 + Vyng) Gang — Gon-d) Saly @8
for the approximations 2¢ < s < 4¢—p — 1

%?n' L vaff"‘z' 8 __ Va(eu-e, % @w
va(()zn-—d, 9 __. l’aff"'g' 9) -+ Va('z""' )] @8, ...
gn, 8) __ @en-2, ) _ 1 (2n-2, 0) -4, 8) ___ . (gn-2,0) (2n~4, 8)
v*ﬂ() =0, Yyy =1 A1 * vvé = vv(() + VY L

where (5.7}
k, 0 _ 2k+2, 8 ok, 0 L+1, @
Va(z Y= (C h+1 Ya ( d gek va.(lo )) - (C-z}. +1 Czl.) vaiz h +
L} . ., 8 I ]
+ (C"l +1 Y (2 0 g’z Vg (2 8 — (szﬂ - §‘zlz) va? 04
+ &2”1 c‘(z'w e) _ ‘32(. v, (2) 0)) (C-ziu — ﬁzf) !’a;(f"“' 9 (aB)

2k, 8) _ 2l.12, 8 ak, 2k+1, 8
Vv( ) = Sina ”Y(x =0 — &y ( — Carsr — &ai) ”r(x .9

For the various approximations, if the statical constraint conditions are written out
successively for each pair of neighboring atiff layers, if these are then added and the
boundary conditions taken into account, we obtain as a result the following basic relations:

for the approximations s =0

&03 + affo'; = Eqe*t3 = 70) @8)
1
va;) +2 PYS\‘%) == Ee**4 {(rY+ —% )+ 8
1 aH allan T — C—:mrz—) oH, (gznt,S*' — & am¥s)
+e +
H a‘H B a 14 aﬂ .

for the approximations 1 s <<2¢—p—1
P+ Pu{3=0 (g5 PO+2P0]=0 (5.9)
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for the approximations 2¢—p<s<<2¢9—1

Pw(r:) + Pu!rs‘l) = RaS(‘;p) - ngf;p) (2B) (5.40)
5) ) (s-p) - -
P*rsz +2PYY'3 =— R i —‘2RY'(YS3 P
for the approximations 29 s <C4q—p—1
() (=) __ —~,
Pﬁ:l + Py = Pasfs; - Paffi - chg’sl—p) - Ra?? ? (=) {5.11)
p‘fs;} +2 PY‘(S; =—3 PY’?& —4 PY:}S; - RYS:;P) -2 RYfrss_p)
for the approximations 4¢ — p<Cs<C4qg—1
(5.12)
(® () _ (- - - - ~P) (23
Pa*{sl + Paysz) - Pav‘:)s - Paf(s} - Rairs1 P) Ra(\rsz P — RGS(SS P Rasmp) (233
( ) . ) . ; ~ - -
PYY“; +2 Pws'_' —3 Pwsfs‘l —4 P‘ria) - Ryf";p) -2 R"(frsap) —3 RY?C ?—4 Rvgs ”
where the following notation has been used
. . i i v, &
Pl = Z (SREE HEATIE A R
. { i Fiwe 2 -
RO =3 Gt —tp ey 630D (5.13)
n__ i i L, ti2
Pvgi == E (&5 — LD g Gyffi o
H__ <t i i 11,
RQ =2 Cul—lu e s E0 10
with
. n -
N X -
2 flag,, by _ys 6 p) = }u Fo s by g C1g) — 21 f(@qur Byreyr Cangg) {5.14)

The quantities on the left-hand sides of the basic relations (5.8) to (5.12) have the
following Expressions:

) . »
P = = 3 G = ) 0 L vy) 4 P o
1 3
) — 0, x 2
Py =0 H, %Y 760 + P) (5.15);

0 _ 1 7o F]
Pers=Quv {H,‘Ils [5'5: (Hava§) + 5o (Hozpl) ]} + P

P?Srs; =—1/2 Q’ VVvﬂ()’) + Pr?;

where

@ 6 gyt 3 2 1 TO (), 2 (s) }_.
Lva™ %0 ¥ =05 I, 9F \ I, | € HT6¥a0 ) + 37 (Ha?s)
1t 4a(1 (2 3
1 1o 1 [2 g, 2 5
T o +vas) Hz 01 {H“llﬁ [ag (Hgvg") — 57 (Huvi.’;))]} (@) (5.18)

{ <* ey
=72 G-l 7T 647
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For the quantities with superscripts r or @ in (5.15), we have

Vo 1 g 85 ®
2k, K, _%%
-53:3’“2 (G — Can-1) & [L (Voo ek, » 8 ", Vi) + 1____‘,2, s "gz ¢] (ad)
i 1 9 2k
P=3 Z (Can — Lo &g {1 VIH, 57 Vo0t O — (5.18)

(1 2k, 8) (2k, 3)
" Hs[aa (Ho, 85 ) + 5 (s )]}+
1

+H“?9'ﬁ i, o [ a‘”a"a“ ) — 3y (e ">]}} )

P, (')”—-“ ""2 (P AL { {H H [ag (Hgvgg @k )

W(H yfz" ‘))]}+ 122:, VGY%’ 's)}
2k

l * i .
9 -y A
P ( )___ e 2 (sz . Cg}; 31) 20k {i__._.....; VVUY‘()zl , 0)

2 4
“T ek 2k, 8} a (2%, 8)
(Hgo, %) + 2 (H,o }]}
T, B A, {ag 8o gy P

It is not difficult to verify that the right-hand sides of (5.10) to (5.12) are expressed
in tems of quaatities which are known from the preceding approximations. For example,
the quantities on the right in Egs. (5.10) have the form

- » L=y, 8= L1, 3=P).
Rxg:x ) = E (gzk—x - Czi;—z) ¢ .‘.-—1{ L (”95 1. p)’ "g) e ;o), "25.—1) '}“

- (201,
Vajimy - ‘i_ 30,‘,50 a—p)] (a8)
1— Varo1 H, ag

)
R, (3-P) Q;‘ I 3 Vy ("P) (x 8) {5.19)

)
RGP =0 V{H 71 [a (Havoal ™) + 5o (Hof” ))]}

RGP =— 5 Qs"VVv (s-P)

where

esr-1

1 o : ‘
= 2 g1y — Ean) 1— vy, al {5.20)

Substituting (5.15) into the basic relationa (5.8) to (5.12) and shifting to the right-
hand sides those quantities which are expressed in terms of the preceding approximations,
we obtain the following equations in s, 2,(:) v(s);

*
'_2 (Cg —Lony) g, L (”u(s)- ”30 P Vo) b Qe H aE Vu =T, ®  (ep (5.21)

1 18
O {H‘Hs ['52 (Hav o) + ﬁ (H,vg ”)]} Qayyo, =10 (5.22)
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The right-hand sides, Tf:), TB(’), T?(’) are expressed in terms of quantities which
are known from the previous approximations.

For arbitrary location of the @ — f3 coordinate plane, all three unknowns, v (8‘ b(f‘o)'
and v(sg , occur in each of Eqgs. (5.21) and (5.22). However, the @ — 3 coordinate plane
can always be located so that the quantity Q, goes to zero*. Then Egs. (5.21) will contain
only the unknowns v(Jg, and u(s‘g , and Eq. (5.22) will contain only lf(o) This means that
for such a choice of location ot the & — 3 coordinate plane the generalized plane stress
problem and the bending problem uncouple in each approximation. In what follows it will
always be assumed that the @ — 3 coordinate plane is located so that Q; = 0. It then

follows from Egs. (5.21) and (5.22) that :{¥3, and {3} satisfy Eqs.
“Z s = L) €ou L (1,87 15 v ) = T W (B (5.2
and that l'“(,') satisfies Eq.
— Qayvi, Y =T, (5.2%)

In each approximation the determination of L . and b ‘), reduces to the solution
of the two Eqgs. of (5.23), which are the equauons of generalized plane stress for some
anisotropic plate, Under the additional condition that the Poisson's ratios of all the stiff

layers are the same, i.e., under the condition v, ** V3, we obtain the equations of gen-
eralized plane stress for some isotropic plate from Fgs. (5.23)
—( vy, L (Z.ag ) Z'5(() Yoy ]'a(‘j) (1% (5.0
The quantity Q, is determined in accordance with (5.17) with v,, == va.

In each appraximation the problem of bending reduces to the solution of the biharmonic
Eq. (5.24). The plate stiffness is found in terms of Q,, which, as is clear from (5.17), de-
pends on quantities referring to the stiff layers. Therefore, for 0 <a < 2 the stiffness of
a layered plate does not depend on the stiffness of the soft layers.

The Eqgs. (5.23) to (5.25) differ for the various approximations only by their right-hand
sides. Changes in the character of the right-hand sides occur in going from the approxi-
mations s =2¢g - p~1ltos=2g—~p, froms=2g—1tos=2q, froms=4g—~-p~1to
8 =49 — p, and from s =4qg — 1 to s = 4q, etc.

For the zeroth approximation the right-hand sides of F.gs. (5.19) and (5.20) have the
form

1
7,9 = v (Gt — 1) @3 (5.26)
T O LI LAIEEE JaRE ) 1 Oy (%a"San - tz—;—zm)——
Y Egaihrd Y Y Hz ”, 9z,
OH 4 (3" San — Ta S aim) }
on

For the approximations 1 <{ s { 2¢ — p — 1, the right-hand sides of Egs. (5.23) to
(5.25) become zero

T,9=0 (2, T, =0 5.27)

For the approximation 29 — p ' s  2¢ — 1, we have

* It can happen that the quantity Q, becomes zero when the & — B plane either passes
through a stiff layer or coincides with some plane of contact between layers. All the
equations which have been given must then be altered somewhat.
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; - - )
T,W=—REP_REP _pD_pO @y
) (*-p) (s-p) ) ) 2%
8 __ - s~p 0
T, '_—'Rﬂzp'FZRwap”Pn(:;_ P‘Y‘(rJ
The expressions for the quantities on the right side of {5.28) are given in (5.18) and
(5.19).

For the approximations2g <C s < 4¢ —- p, we obtain

— ) ) s—p) (s~1) __ . p O .
Ta(‘) = Puf;a - Paffa - Rasn - Raw'z Pm‘n sz (=2 (5.29)
(s) (=1} __yp (=1 Y . o e
TY(S) = —3 PYS{SA)l —4 PYYS;'J — R, ¥z Rw:i - P‘r‘(r"cz —2 P*(gr:s

6. Let us consider alayered plate for which the ratio E,/E, is comparable with the
square of the relative thickness, i.e., a ~ 2, In this case we shall use expansions in the
parameter € for the asymptotic integration of the equations of the theory of elasticity. In
ascertaining the possibility of satisfying the boundary conditions and the conditions of
bonding of the layers, we verify that in the expansions for the stresses ¥y, 05,y O, , all
terma are retained for the soft layers, but the first two terms are zero for the stiff layers.
This is equivalent to saying that in the first two approximations (for expansions in ¢ ),
the Kirchhoff assumption holds only for the stiff layers.

The character of the state of stress in the soft layers is described in detail in [4]
(see Section 5, State of Stress C).

In the zeroth approximation the constraint conditions for neighboring stiff layers have
the form

a4y !v (2. 0 l,ﬂ()?k, 0)] =2 Cok+2 (t+ vg}.ﬂ) (§21.+1 Ea} ){6 i +

" 9k+2,2)
-+ Qz};u Gaftgl 2 + ngnl safﬁ ] (23)

(6.1)
2k, 001 .. @, 2)
€akty [v(zhz o ”ag )] =2y (14 Vg4 ) Capy — Lai) [cayo
+ 0GP LGP @
2k, 0, (2h+2, 0 -
vt O =g (6.2)
ok, 2) _ p 25 (2K, 2) 35 (28, D)
T [.% Latours 2800, 0] = .
(6.3)
2k+2, 3) 242, 2) (2h+2,2)
= Carsy [svio — Lo +1 YS{2 — 285,559 ]
It follows from (6.2) that
v, (26, 0 __ v“()i)) (6.4)

i.e., the quantity v is common for the entire layered plate. It is clear from (6.1) that
the quantities ”(2:00) and v"é‘o

Accordingly, the problem of the deformation of a layered plate for which a ~. 2 reduces
in the zeroth approximation to a system of 2 {n + m) + } equations in the 2{n +m) + 1

unknown functions

%) are different for different layers.

0(2:;).0) (n& 0} (h=1,2..., 0y —1, —2....—m) vﬁ%
These equations have the form

2 2
@k, 5 eon G — 85 1 8
— eak Qox — Toug) Lo $™ 0, w25 0 v, ) W H, 3V’ o=
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__fun 1 2Oy @R 0)
2“ + Vg]..,;l) Cf_»l.n, ggl
(6.5)
(2k,0) __ ,, (20-2,0) (aB)
G e ]
+ 2 (213 1 (Hgo, (o} POy (" vg (}. 0))
E (C%‘ - §2/~—1) 21— vz'_?) v 1’1\111 aE 8a
1 B 1 aIIB (Cz uta - c—gmra-)
— Q3VV2yy 0 = ;;;m {r‘( —T e H M, [ g, +
- (6.6)

M (L), TS+ _ €~2mf3-)
on }

For a symmetricaily constructed, three-layered (sandwich) plate, Eqs. (6.5) and (6.6)
are a system of three equations in the three unknowns % 0), v(é ), and ).

Let us examine a layered plate for which a > 2. When we investigate the possibility
of satisfying the boundary conditions and the conditions of bonding of the layers, we
arrive at the conclusion that in the zeroth approximation the loaded layers take the entire
surface load. This means that for a > 2 a layered plate ceases to act as a unit.

In the present paper only the intemal state of stress has been studied. Therefore, the
investigation which has been presented makes it possible to refine the differential equa-
tions of the internal problem for layered plates. However, in addition to the refinement
of the differential equations, it is alsc necessary to carry through a refinement of the
boundary conditions (for a homogeneous plate, see {6]). This is connected with the inves-
tigation of the states of stress corresponding to the edge effects.
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